Zoology
From Wikipedia, the free encyclopedia
Part of a series on |
Zoology |
---|
![]() |
History
Main article: History of zoology (through 1859)
Ancient history to Darwin

Conrad Gesner (1516–1565). His Historiae animalium is considered the beginning of modern zoology.
Over the 18th and 19th centuries, zoology became an increasingly professional scientific discipline. Explorer-naturalists such as Alexander von Humboldt investigated the interaction between organisms and their environment, and the ways this relationship depends on geography, laying the foundations for biogeography, ecology and ethology. Naturalists began to reject essentialism and consider the importance of extinction and the mutability of species. Cell theory provided a new perspective on the fundamental basis of life.
Post-Darwin
Main article: History of zoology (since 1859)
These developments, as well as the results from embryology and paleontology, were synthesized in Charles Darwin's theory of evolution by natural selection.
In 1859, Darwin placed the theory of organic evolution on a new
footing, by his discovery of a process by which organic evolution can
occur, and provided observational evidence that it had done so.Darwin gave new direction to morphology and physiology, by uniting them in a common biological theory: the theory of organic evolution. The result was a reconstruction of the classification of animals upon a genealogical basis, fresh investigation of the development of animals, and early attempts to determine their genetic relationships. The end of the 19th century saw the fall of spontaneous generation and the rise of the germ theory of disease, though the mechanism of inheritance remained a mystery. In the early 20th century, the rediscovery of Mendel's work led to the rapid development of genetics by Thomas Hunt Morgan and his students, and by the 1930s the combination of population genetics and natural selection in the "neo-Darwinian synthesis".
Research
Structural
Cell biology studies the structural and physiological properties of cells, including their behavior, interactions, and environment. This is done on both the microscopic and molecular levels, for single-celled organisms such as bacteria as well as the specialized cells in multicellular organisms such as humans. Understanding the structure and function of cells is fundamental to all of the biological sciences. The similarities and differences between cell types are particularly relevant to molecular biology.Anatomy considers the forms of macroscopic structures such as organs and organ systems.
Physiological
Physiology studies the mechanical, physical, and biochemical processes of living organisms by attempting to understand how all of the structures function as a whole. The theme of "structure to function" is central to biology. Physiological studies have traditionally been divided into plant physiology and animal physiology, but some principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells. The field of animal physiology extends the tools and methods of human physiology to non-human species. Physiology studies how for example nervous, immune, endocrine, respiratory, and circulatory systems, function and interact.Evolutionary
Evolutionary research is concerned with the origin and descent of species, as well as their change over time, and includes scientists from many taxonomically oriented disciplines. For example, it generally involves scientists who have special training in particular organisms such as mammalogy, ornithology, or herpetology, but use those organisms as systems to answer general questions about evolution.Evolutionary biology is partly based on paleontology, which uses the fossil record to answer questions about the mode and tempo of evolution, and partly on the developments in areas such as population genetics and evolutionary theory. In the 1980s, developmental biology re-entered evolutionary biology from its initial exclusion from the modern synthesis through the study of evolutionary developmental biology.Related fields often considered part of evolutionary biology are phylogenetics, systematics, and taxonomy.
Systematics
Scientific classification in zoology, is a method by which zoologists group and categorize organisms by biological type, such as genus or species. Biological classification is a form of scientific taxonomy. Modern biological classification has its root in the work of Carolus Linnaeus, who grouped species according to shared physical characteristics. These groupings have since been revised to improve consistency with the Darwinian principle of common descent. Molecular phylogenetics, which uses DNA sequences as data, has driven many recent revisions and is likely to continue to do so. Biological classification belongs to the science of zoological systematics.
Linnaeus's table of the Animal Kingdom from the first edition of Systema Naturae (1735).
Further, each kingdom is broken down recursively until each species is separately classified. The order is: Domain; Kingdom; Phylum; Class; Order; Family; Genus; Species. The scientific name of an organism is generated from its genus and species. For example, humans are listed as Homo sapiens. Homo is the genus, and sapiens the species. When writing the scientific name of an organism, it is proper to capitalize the first letter in the genus and put all of the species in lowercase. Additionally, the entire term may be italicized or underlined.
The dominant classification system is called the Linnaean taxonomy. It includes ranks and binomial nomenclature. The classification, taxonomy, and nomenclature of zoological organisms is administered by the International Code of Zoological Nomenclature, and International Code of Nomenclature of Bacteria for animals and bacteria, respectively. The classification of viruses, viroids, prions, and all other sub-viral agents that demonstrate biological characteristics is conducted by the International Code of Virus classification and nomenclature. However, several other viral classification systems do exist.
A merging draft, BioCode, was published in 1997 in an attempt to standardize nomenclature in these areas, but has yet to be formally adopted. The BioCode draft has received little attention since 1997; its originally planned implementation date of January 1, 2000, has passed unnoticed. However, a 2004 paper concerning the cyanobacteria does advocate a future adoption of a BioCode and interim steps consisting of reducing the differences between the codes. The International Code of Virus Classification and Nomenclature (ICVCN) remains outside the BioCode.
Ethology

Kelp Gull chicks peck at red spot on mother's beak to stimulate the regurgitating reflex.
Biogeography studies the spatial distribution of organisms on the Earth,focusing on topics like plate tectonics, climate change, dispersal and migration, and cladistics.
Branches of zoology
Although the study of animal life is ancient, its scientific incarnation is relatively modern. This mirrors the transition from natural history to biology at the start of the nineteenth century. Since Hunter and Cuvier, comparative anatomical study has been associated with morphography shapins the modern areas of zoological investigation: anatomy, physiology, histology, embryology, teratology and ethology. Modern zoology first arose in German and British universities. In Britain, Thomas Henry Huxley was a prominent figure. His ideas were centered on the morphology of animals. Many consider him the greatest comparative anatomist of the latter half of the nineteenth century. Similar to Hunter, his courses were composed of lectures and laboratory practical classes in contrast to the previous format of lectures only.Gradually zoology expanded beyond Huxley's comparative anatomy to include the following sub-disciplines:
- Zoography, also known as descriptive zoology, describes animals and their habitats
- Comparative anatomy studies the structure of animals.
- Animal physiology
- Behavioral ecology
- Ethology studies animal behavior.
- Invertebrate Zoology.
- Vertebrate Zoology.
- Comparative Zoology.
- The various taxonomically oriented disciplines such as mammalogy, herpetology, ornithology and entomology identify and classify species and study the structures and mechanisms specific to those groups.
No comments:
Post a Comment